ECMWF operational model: the IFS

Mentor: Sylvie Malardel and also Peter Towers, Nils Wedi

August 8, 2012

IFS: Integrated Forecast System

Operational system at ECMWF

- Deterministic 10 day forecast (T1279 \simeq 16km resolution) dispatched twice a day to the member states for synoptic scale forecasting activities and as lateral boundary conditions for LAM models (strong operational time constraints)
- EPS with 50+1 members at T639
- Monthly and seasonal forecasts (IFS coupled with NEMO)
- RE-ANALYSES (ERA40, ERA interim)

IFS/ARPEGE/ALADIN/AROME

- Global model at Meteo-France (stretched grid with rotated poles)
- Bi-periodic spectral LAM model (Aladin-Hirlam consortium, AROME)

Choices and design

"old fashion", very efficient, very robust

Spectral, Eulerian, leap-frog, semi-implicit

⇒ Spectral, semi-implicit, semi-Lagrangian, two time levels

Choices and design

"old fashion", very efficient, very robust

Spectral, Eulerian, leap-frog, semi-implicit

⇒ Spectral, semi-implicit, semi-Lagrangian, two time levels

Choices and design

"old fashion", very efficient, very robust

Spectral, Eulerian, leap-frog, semi-implicit

⇒ Spectral, semi-implicit, semi-Lagrangian, two time levels

Common characteristics

- Two-time levels, spectral, semi-implicit
- "non finite volume" semi-Lagrangian advection, non-linear RHS and physics on a collocation grid (reduced Gaussian A-grid for the IFS)
- hydrostatic pressure hybrid vertical coordinate (Simmons and Burridge, Laprise) — Finite differences or finite elements.
- linear tangent and adjoint codes (4DVAR)
- hydrostatic (operationel IFS) or fully-compressible non-hydrostatic (Bubnova et al, 1995, Wedi et al, 2008)
- ICI (predictor/corrector) scheme for dynamics (stability of NH-IFS)

IFS time step

- Inverse Legendre-Fourier Transforms
- Non-linear "explicit" part of the dynamics: RHS of equations, semi-Lagrangian advections
- Physics
- Direct Fourier-Legendre Transforms
- Spectral computations : solver for semi-implicit correction, numerical diffusion, gradient computations (pressure gradient force)
- Time split (sequential) both for physics/dynamics coupling and inside the physics,
- Semi-Lagrangian averaging of some (slow) physics tendencies along the SL trajectories.

IFS prognostic variables

Spectral space

- VOR, DIV, $R_hT = R_dT_v$, π_s ,
- d_4 , $\hat{q} = \ln(p/\pi)$

Grid point space

- (VOR,DIV)/(U,V), T, π_s ,
- d_4/gw (+X), \hat{q}
- q_v , q_l , q_i , q_r , q_s + cloud fraction
- q_{O3}, q_{CO2} and many more if coupling with chemistry

IFS Dycores are "moist" Dycores:

$$R_d T_v = R_h T = [Rd + (R_v - Rd)q_v - R_d(q_l + q_i + q_r + q_s)]T$$
, c_{p_h} \Rightarrow buoyancy of moist air and water loading

with some inconsistencies: some parametrizations use dry c_p , precipitation mass flux compensated by a flux of dry air, "anelastic" physics/dynamics coupling in NH-IFS...

Is the IFS design so old fashion?

Global 12 hour NH forecast at T8000 ($\delta x \simeq 2.5~km$) (Nils Wedi, last week...)

Fast Legendre Transforms Nils Wedi, Mats Hamrud, George Mozdzynski

Wall-clock time computational cost of the direct and inverse spectral transforms during a 1hour simulation at T7999

Notably, the hydrostatic (H) simulation has 2 prognostic variables less to transform and no ICI iteration, more than halving the number of transforms compared to the non-hydrostatic (NH) simulation.

Computational Cost: H T2047 and H at T1279

Tstep=450s, 1.6s/iteration With 896x16 ibm power7

H T_L1279 L91

Tstep=600s, 2.8s/iteration With 192x8 ibm power7

Computational Cost: NH at T2047 and T3999 with 137 vertical levels

Tstep=240s, 8.5s/iteration With 896x16 ibm power7

NH T_L2047 L137

Tstep=450s, 2.2s/iteration With 896x16 ibm power7

On going works...

Conservation aspects

- Mass fixers (for chemistry, MACC project)
- Eulerian flux form scheme as reconstruction operators for the Semi-Lagrangian scheme (bi-focal SL/Eul glasses!)

Simpler equations for NH

Unified equations (Arakawa and Konor, 2009) for the IFS? our dream : no ICI scheme, no "X" term, simpler coupling with physics...

Modern Computer Science

- Dis-Integration of the I.F.S : OOPS project \Rightarrow C⁺⁺ layer driving both the assimitation systems and the model (to start with...)
- Fortan Coarrays (CRESTA PROJECT)

At ECMWF, on a little (moist!) planet...

Small planel

- instead of a LAM model for convection resolving studies (dry and moist bubbles, splitting storms) and NH orographic dry and moist waves,
- Dry Held and Suarez, dry baroclinic waves,

but, can we reproduce the (moist) climate on a small planet and then study the transition between parametrized and resolved convection? \Rightarrow EMBRACE project (P. Bechtold, N. Semane, S. Malardel)

- reduce the gap between large balanced scales and convective scales (if gravity kept constant)
- what happen when there is no gap (test case 413?)

Sharing our planet

OPEN-IFS for universities and education, to come soon...